
An algorithm for generating arguments in

classical predicate logic

Vasiliki Efstathiou, Anthony Hunter

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{v.efstathiou, a.hunter}@cs.ucl.ac.uk

Abstract. There are a number of frameworks for modelling argumen-
tation in logic. They incorporate a formal representation of individual
arguments and techniques for comparing conflicting arguments. A com-
mon assumption for logic-based argumentation is that an argument is a
pair 〈Φ, α〉 where Φ is a minimal subset of the knowledgebase such that Φ

is consistent and Φ entails the claim α. Different logics provide different
definitions for consistency and entailment and hence give us different op-
tions for argumentation. An appealing option is classical first-order logic
which can express much more complex knowledge than possible with
defeasible or classical propositional logics. However the computational
viability of using classical first-order logic is an issue. Here we address
this issue by using the notion of a connection graph and resolution with
unification. We provide a theoretical framework and algorithm for this,
together with some theoretical results.

1 Introduction

Argumentation is a vital aspect of intelligent behaviour by humans used to
deal with conflicting information. There are a number of proposals for logic-
based formalisations of argumentation (for reviews see [6, 14, 5]). These proposals
allow for the representation of arguments and for counterargument relationships
between arguments. In a number of key examples of argumentation systems, an
argument is a pair where the first item in the pair is a minimal consistent set of
formulae that proves the second item which is a formula (see for example [2, 9,
3, 1, 10, 4, 7, 13]). Algorithms have been developed for finding arguments from a
knowledgebase using defeasible logic. However, there is a lack of viable algorithms
for finding arguments for first-order classical logic.

We propose an approach to this problem by extending an existing proposal
for propositional logic [8] based on the connection graph proof procedure [11, 12].
This extension is based on the idea of resolution with unification [15]. We use
a connection graph structure where nodes are clauses from the knowledgebase
and arcs link contradictory literals and then apply heuristic search strategies to
follow the arcs of the graph and create partial instances of the visited clauses
based on the unification of atoms that appear at either end of an arc. The

aim of the search is to retrieve an unsatisfiable grounded version of a subset of
the knowledgebase and use the refutation completeness of the resolution rule
and Herbrand’s theorem to obtain a proof for the claim. The minimality and
consistency of this proof is achieved according to some restrictions applied during
the search.

2 Argumentation for a language of quantified clauses

In this section we review an existing proposal for argumentation based on clas-
sical logic [3] and in particular an extension of this [4] dealing with first-order
logic. For a first-order language F , the set of formulae that can be formed is
given by the usual inductive definitions of classical logic.

In this paper we use a restricted function-free first-order language of quan-
tified clauses F consisting of n-ary predicates (n ≥ 1) where we allow both
existential and universal quantifiers and we consider arguments whose claims
consist of one disjunct (i.e. unit clauses). This language is composed of the set
of n-ary (n ≥ 1) predicates P , a set of constant symbols C, a set of variables
V , the quantifiers ∀ and ∃, the connectives ¬ and ∨ and the bracket symbols
(). The clauses of F are in prenex normal form, consisting of a quantification
string followed by a disjunction of literals. Literals are trivially defined as posi-
tive or negative atoms where an atom is an n-ary predicate. The quantification
part consists of a sequence of quantified variables that appear as parameters of
the predicates of the clause. These need not follow some ordering, that is any
type of quantifier (existential or universal) can preceed any type of quantifier.
Deduction in classical logic is denoted by the symbol `.

Example 1. If {a, b, c, d, e} ⊂ C and {x, y, z, w} ⊂ V , then each of the ele-
ments of Φ is a clause in F where Φ = {∀x∃z(P (x) ∨ ¬Q(z, a)), ∃x∃z(P (x) ∨
¬Q(z, a), ∀w∃x∃z(P (x)∨¬Q(z, a)∨P (b, w, x, z)), ∀w(¬Q(w, b, a)),¬Q(e, b, a)∨
R(d),¬P (a, d)}. In addition ∀w(¬Q(w, b, a)) is a unit clause, ¬Q(e, b, a) ∨ R(d)
is a ground clause and ¬P (a, d) is a ground unit clause.

Given a set ∆ of first-order clauses, we can define an argument as follows.

Definition 1. An argument is a pair 〈Φ, ψ〉 such that (1) Φ ⊆ ∆, (2) Φ ` ψ,
(3) Φ 6` ⊥ and (4) there is no Φ′ ⊂ Φ such that Φ′ ` ψ.

Example 2. Let ∆ = {∀x(¬P (x) ∨ Q(x)), P (a), ∀x∀y(P (x, y) ∨ ¬P (x)), R(a, b),
∃x(R(x, b)), ∃x(¬S(x, b))}. Some arguments are:

〈{∀x(¬P (x) ∨Q(x)), P (a)}, Q(a)〉 〈{R(a, b)}, ∃x(R(x, b))〉
〈{∀x∀y(P (x, y) ∨ ¬P (x)), P (a)}, ∀y(P (a, y))〉 〈{P (a)}, ∃y(P (y))〉

3 Relations on clauses

In this section we define some relations on F that we use throughout this paper.
We use the terms ‘term’, ‘variable’ and ‘constant’ in the usual way. We define

functions Variables(X) and Constants(X) to return the set of all the variables
and constants respectively that appear in a literal or a clause or a set X .

Definition 2. For a language L, with variables V and constant symbols C, the
set of bindings B is {x/t | x ∈ V and t ∈ V ∪ C}.

Definition 3. For a clause φ and a set of bindings B ⊆ B, Assign(φ,B) returns
clause φ with the values of B assigned to the terms of φ. So, for each x/t, if x
is a variable in φ, then x is replaced by t and the quantifier of x is removed.

Example 3. Let φ = ∃x∀y∃z∀w(P (c, x) ∨ Q(x, y, z) ∨ R(y, c, w)). Some assign-
ments for φ with the corresponding values assigned to φ are:

B1 = {x/a, z/b}, Assign(φ,B1) = ∀y∀w(P (c, a) ∨Q(a, y, b) ∨ R(y, c, w))
B2 = {x/a, y/b, z/b}, Assign(φ,B2) = ∀w(P (c, a) ∨Q(a, b, b) ∨ R(b, c, w))
B3 = {x/a, z/b, w/b}, Assign(φ,B3) = ∀y(P (c, a) ∨Q(a, y, b) ∨ R(y, c, b))
B4 = {x/a, y/a, z/b, w/b}, Assign(φ,B4) = P (c, a) ∨Q(a, a, b) ∨ R(a, c, b)
B5 = {w/z}, Assign(φ,B5) = ∃x∀y∃z(P (c, x) ∨Q(x, y, z) ∨R(y, c, z))

Function Assign(φ,B) gives a specific instance of φ, indicated by the bindings
in B. We define next the function that returns all the possible instances for a
clause φ and the function that returns all the possible instances for all the
elements of a set of clauses Ψ .

Definition 4. For a clause φ, Assignments(φ) returns the set of all the possible
instances of φ: Assignments(φ) = {Assign(φ,Bi) | Bi ∈ ℘(B)}. For a set of
clauses Ψ , SetAssignments(Ψ) =

⋃
φ∈Ψ{Assignments(φ)}.

We use the assignment functions to create partial instances of the clauses
from the knowledgebase during the search for arguments. As no restrictions
apply to the order of the quantifiers in the quantification of a clause from F , the
order of interchanging universal and existential quantifiers in a clause φ is taken
into account when a partial instance of φ is created. For this, we define function
Prohibited(φ) to return the sets of bindings that are not allowed for φ.

Definition 5. Let φ be a clause. Then, Prohibited(φ) ⊆ ℘(B) returns the set
of sets of bindings such that for each B ∈ Prohibited(φ) there is at least one
yi/ti ∈ B such that yi is a universally quantified variable which is in the scope
of an existentially quantified variable xi for which either xi = ti or xi/ti ∈ B.

Example 4. For the sets of bindings of example 3, B3, B4, B5 ∈ Prohibited(φ)
and B1, B2 /∈ Prohibited(φ).

We now define a function that gives a partial instance of a clause φ where
each of the existentially quantified variables is replaced by a distinct arbitrary
constant from C \ Constants(φ). This is a form of Skolemization.

Definition 6. For a clause φ, ExistentialGrounding(φ,B) = Assign(φ,B) where
B ∈ ℘(B) is such that: (1) xi/ti ∈ B iff xi ∈ Variables(φ) and xi is existen-
tially quantified (2) ti ∈ C \ Constants(φ) and (3) for all xj/tj ∈ B, if xj 6=
xi then tj 6= ti. If φ′ = ExistentialGrounding(φ,B) for some φ ∈ F and B ∈ ℘(B),
we say that φ′ is an existential instance of φ.

Example 5. For φ = ∃x∀y∃z∀w(P (c, x)∨Q(x, y, z)∨R(y, c, w)), Constants(φ) =
{c} and so each of the elements of the set of constants I = {a, b} ⊂ C \
Constants(φ) can be used for the substitution of each of the existentially bound
variables x, z. For B = {x/a, z/b}, ExistentialGrounding(φ,B) = ∀y∀w(P (c, a) ∨
Q(a, y, b) ∨R(y, c, w)).

Definition 7. For a clause φ = Q1x1, . . . ,Qmxm(p1 ∨ . . . ∨ pk), Disjuncts(φ)
returns the set of disjuncts of φ. Disjuncts(φ) = {p1 ∨ . . . ∨ pk}. For each pi ∈
Disjuncts(φ), Unit(φ, pi) returns the unit clause that consists of pi as its unique
disjunct and the part of the quantification Q1x1, . . . ,Qmxm of φ that involves
the variables that occur in pi as its quantification: Unit(φ, pi) = Qjxj . . .Qlxl(pi)
where {Qjxj , . . . ,Qlxl} ⊆ {Q1x1, . . . ,Qmxm} and {xj , . . . , xl} = Variables(pi).

Example 6. Let φ = ∀x∀y∃z(P (x) ∨ Q(a) ∨ ¬R(x, y, z, b) ∨ S(a, b, c)) and let
p = P (x), q = Q(a), r = ¬R(x, y, z, b) and s = S(a, b, c). Then, Disjuncts(φ) =
{p, q, r, s} and

Unit(φ, p) = ∀x(P (x)) Unit(φ, r) = ∀x∀y∃z(¬R(x, y, z, b))
Unit(φ, q) = Q(a) Unit(φ, s) = S(a, b, c)

Definition 8. For a clause φ, Units(φ) = {Unit(φ, pi) | pi ∈ Disjuncts(φ)}.

Example 7. Continuing example 6, for φ = ∀x∀y∃z(P (x)∨Q(a)∨¬R(x, y, z, b)∨
S(a, b, c)), Units(φ) = {∀x(P (x)), Q(a), ∀x∀y∃z(¬R(x, y, z, b)), S(a, b, c)}

We now define some binary relations that express contradiction between
clauses. For this we define contradiction between unit clauses φ and ψ as follows:
φ and ψ contradict each other iff φ ` ¬ψ. Then we say that ψ is a complement
of φ and we write φ = ψ. Using the contradiction relation between the units of
a pair of clauses, we define the following relations of attack.

Definition 9. Let φ, ψ be clauses. Then, Preattacks(φ, ψ) = {ai ∈ Units(φ) |
∃aj ∈ Units(ψ) s.t. ai = aj}.

Example 8. According to definition 9, the following relations hold.
8.1) Preattacks(∀x(¬N(x) ∨R(x)), N(a) ∨ ¬R(b)) = {∀x(¬N(x)), ∀x(R(x))}
8.2) Preattacks(∀x(¬N(x) ∨R(x)), N(a) ∨ ¬R(a)) = {∀x(¬N(x)), ∀x(R(x))}
8.3) Preattacks(P (a) ∨ ¬Q(b),¬P (a) ∨Q(b)) = {P (a),¬Q(b)}
8.4) Preattacks(∀x(P (x) ∨ ¬Q(a, x)), ∃x(¬P (a) ∨Q(x, b))) = {∀x(P (x))}
8.5) Preattacks(∃x(¬P (a) ∨Q(x, b)), ∀x(P (x) ∨ ¬Q(a, x)) = {¬P (a)}

We now define a special case of the preattacks relation which we use to define
arcs for trees in the next section.

Definition 10. For clauses φ, ψ, if |Preattacks(φ, ψ)| = 1 = |Preattacks(ψ, φ)|
then Attacks(φ, ψ) = α, where α ∈ Preattacks(φ, ψ), otherwise Attacks(φ, ψ) =
Attacks(ψ, φ) = null.

Example 9. For examples 8.1, 8.2 and 8.3, Attacks(φ, ψ) = null. For examples
8.4-8.5, Attacks(φ, ψ) = Preattacks(φ, ψ).

Although the Attacks relation might be null for a pair of clauses φ, ψ, it can
sometimes hold for instances of φ and ψ.

Example 10. In example 8.1, let φ = ∀x(¬N(x) ∨R(x)) and ψ = N(a)∨ ¬R(b).
Then |Preattacks(φ, ψ)| > 1 and so, Attacks(φ, ψ) = null. There are instances φ′

of φ though for which Attacks(φ′, ψ) 6= null. Let B1 = {x/a}, and B2 = {x/b}.
Then for φ1 = Assign(φ,B1) = ¬N(a)∨R(a) and φ2 = Assign(φ,B2) = ¬N(b)∨
R(b), Attacks(φ1, ψ) = ¬N(a) and Attacks(φ2, ψ) = R(b). For all other instances
φ′ of φ Attacks(φ′, φ) = null.

Example 11. In example 8.2, let γ = ∀x(¬N(x) ∨R(x)) and δ = N(a) ∨ ¬R(a).
Then, for all the instances γ ′ of γ, |Preattacks(γ ′, δ)| 6= 1 and so there is no
instance γ′ of γ for which Attacks(γ ′, δ) 6= null.

4 Assignment Trees

Using the attack relations defined in section 3, we define in this section the
notion of an assignment tree which represents a tentative proof of an argument.
The definition is designed for use with the algorithm we introduce in section 5
for searching for arguments.

Definition 11. Let ∆ be a clause knowledgebase and α be a unit clause and
let ∆′ = ∆ ∪ {¬α}. An assignment tree for ∆ and α is tuple (N,A, e, f, g, h)
where N is a set of nodes and A is a set of arcs such that (N,A) is a tree and
e, f, g, h are functions such that: e : N 7→ ∆′, f : N 7→ SetAssignments(∆′),
g : N 7→ ℘(B), h : N 7→ SetAssignments(∆′) and

(1) if p is the root of the tree, then e(p) = ¬α
(2) f(p) is an existential instance of e(p) s.t. Constants(f(p)) ⊆ Constants(g(p))
(3) for any nodes p, q in the same branch, if e(p) = e(q) then g(p) 6= g(q)
(4) for all p ∈ N, g(p) ∩ Prohibited(e(p)) = ∅
(5) for all p ∈ N, h(p) = Assign(f(p), g(p))
(6) for all p, q ∈ N , if p is the parent of q, then Attacks(h(q), h(p)) 6= null
(7) for all p, q ∈ N , (Constants(f(p)) \ Constants(e(p)))

⋂
Constants(∆′) = ∅, &

(Constants(f(p)) \ Constants(e(p)))
⋂

(Constants(f(q)) \ Constants(e(q))) = ∅

Each of the functions e, f, g, h for a node p gives the state of the tentative
proof for an argument for α. Function e(p) identifies for p the clause φ from
∆ ∪ {¬α} and f(p) is an existential instance of e(p). g(p) is a set of bindings
that when assigned to e(p) creates the instance h(p) of e(p). Hence, g(p) contains

the set of bindings that create the existential instance f(p) of e(p) together with
the bindings that unify atoms of contradictory literals connected with arcs on the
tree as condition 6 indicates. Condition 7 ensures that the existential instances
used in the proof are created by assigning to the existentially quantified variables
of a clause e(p) constants that do not appear anywhere else in ∆ ∪ {¬α} or the
other instances of the clauses of the tentative proof. Finally, condition 3 ensures
that an infinite sequence of identical nodes on a branch will be avoided.

In all the examples that follow, assignment trees are represented by the value
h(p) for each node p. Hence, all the variables that appear in a tree representation
are universally quantified and so universal quantifiers are omitted for simplicity.

Example 12. Let ∆ = {∀y(¬P (y)∨Q(b, y)), ∀y∃x(P (d)∨P (a)∨M(x, y)), R(c),
∀x∀y(¬M(x, y)), ∃x∀y(Q(x, y) ∨ R(x, y)), Q(a, b) ∨ ¬N(a, b), ∀x∀y(L(x, y, a)),
∀x(¬R(x, x)∨S(x, y)), ¬Q(a, b)∨N(a, b), ∀x∀y(¬S(x, y)), ¬L(c, d, a), ∀x(P (x)),
¬R(c, a)}. The following is an assignment tree for ∆ and α = ∃x∃y(Q(x, y))

¬Q(b, d) p0 e(p0) = f(p0) = ∀x∀y(¬Q(x, y)), g(p0) = {x/b, y/d}

| e(p1) = f(p1) = ∀y(¬P (y) ∨ Q(b, y)), g(p1) = {y/d}

¬P (d) ∨Q(b, d) p1 e(p2) = ∀y∃x(P (d) ∨ P (a) ∨ M(x, y)), g(p2) = {x/f}

| f(p2) = ∀y(P (d) ∨ P (a) ∨ M(f, y))

P (d) ∨ P (a) ∨M(f, y) p2 e(p3) = f(p3) = ∀y(¬P (y) ∨ Q(b, y)), g(p3) = {y/a}

� � e(p4) = f(p4) = ∀x∀y(¬M(x,y)), g(p4) = {x/f}

¬P (a) ∨Q(b, a) p3 ¬M(f, y) p4

Definition 12. A complete assignment tree (N,A, e, f, g, h) is an assign-
ment tree such that for any x ∈ N if y a child of x then there is a bi ∈ Units(h(x))
such that Attacks(h(y), h(x)) = bi and for each bj ∈ Units(h(y)) \ {bi}
(1) either there is exactly one child z of y s.t. Attacks(h(z), h(y)) = bj

(2) or there is a node w in the branch containing y s.t. bj = Attacks(h(y), h(w))

Definition 13. A grounded assignment tree (N,A, e, f, g, h) is an assign-
ment tree such that for any x ∈ N , h(x) is a ground clause.

Example 13. The assignment tree of example 12 is neither complete nor grounded.
It is not a complete assignment tree because for Q(b, a) ∈ Units(h(p3)) the con-
ditions of definition 12 do not hold. Adding a node p5 as a child of p3 with
e(p5) = f(p5) = ∀x∀y(¬Q(x, y)), g(p5) = {x/b, y/a} for which h(p5) = ¬Q(b, a)
gives a complete assignment tree. It is not a grounded assignment tree because
for nodes p2 and p4 h(p2) = P (d) ∨ P (a) ∨M(f, y) and h(p4) = ¬M(f, y) are
non-ground clauses. If we substitute the non-ground term y in h(p2) and h(p4)
with the same arbitrary constant value (e ∈ C for instance), the resulting tree
still satisfies the conditions for an assignment tree and it is also a grounded

assignment tree.

¬Q(b, d) ¬Q(b, d) ¬Q(b, d)

| | |
¬P (d) ∨ Q(b, d) ¬P (d) ∨ Q(b, d) ¬P (d) ∨ Q(b, d)

| | |
P (d) ∨ P (a) ∨ M(f, e) P (d) ∨ P (a) ∨ M(f, y) P (d) ∨ P (a) ∨ M(f, e)

� � � � � �

¬P (a) ∨ Q(b, a) ¬M(f, e) ¬P (a) ∨ Q(b, a) ¬M(f, y) ¬P (a) ∨ Q(b, a) ¬M(f, e)

| |
¬Q(b, a) ¬Q(b, a)

assignment tree 1 assignment tree 2 assignment tree 3

(grounded) (complete) (grounded & complete)

For a complete grounded assignment tree we have the following result on the
entailment of a claim α for an argument.

Proposition 1. If (N,A, e, f, g, h) is a complete grounded assignment tree for
∆ and α, then {e(p) | p ∈ N} \ {¬α} ` α.

Example 14. For the complete and grounded assignment tree of example 13,
{e(p) | p ∈ N} \ {¬α} = {∀y(¬P (y) ∨ Q(b, y)), ∀y∃x(P (d) ∨ P (a) ∨M(x, y)),
∀x∀y(¬Q(x, y)), ∀x∀y(¬M(x, y))} ` ∃x∃y(Q(x, y)).

Although all the assignment trees in example 13 correspond to the same
subset of clauses e(p) from ∆, it is not always the case that a non-grounded or
non-complete assignment tree is sufficient to indicate a proof for α.

The following definitions introduce additional constraints on the definition
of a complete assignment tree for ∆ and α that give properties related to the
minimality and the consistency of the proof for α indicated by the set of nodes
in the assignment tree.

Definition 14. (N,A, e, f, g, h) is a minimal assignment tree for ∆ and
α if for any arcs (p, q), (p′, q′) such that Attacks(h(q), h(p)) = Assign(β, g(q))
for some β ∈ Units(e(q)), and Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for some
β′ ∈ Units(e(q′)), β ` β′ holds iff e(q) = e(q′).

Example 15. The following (N,A, e, f, g, h) is a complete assignment tree for a
knowledgebase ∆ and α = ∃x(¬M(x)), with {e(p) | p ∈ N} = {∀x(M(x)),
∀x(¬S(a) ∨ ¬M(x) ∨ ¬T (x)), ∀x(S(a) ∨ N(x)), ∀x(T (x) ∨ N(x)), ∀x(¬N(x)),
∀x(¬N(x) ∨ R(x)), ∀x(¬R(x))}. (N,A, e, f, g, h) is not minimal because of β =
∀x(¬N(x)) ∈ Units(e(q)) and β′ = ∀x(¬N(x)) ∈ Units(e(q′)). If a copy of the
subtree rooted at p in (N,A, e, f, g, h) is substituted by the subtree rooted at
p′, a minimal assignment tree (N ′, A′, e′, f ′, g′, h′) with {e(p) | p ∈ N ′} =
{∀x(M(x)), ∀x(¬R(x)), ∀x(¬S(a)∨¬M(x)∨¬T (x)), ∀x(S(a)∨N(x)), ∀x(T (x)∨
N(x)), ∀x(¬N(x) ∨R(x))} is obtained. Similarly, if a copy of the subtree rooted
at p′ is substituted by the subtree rooted at p, another minimal assignment tree

(N ′′, A′′, e′′, f ′′, g′′, h′′) is obtained, with {e(p) | p ∈ N ′′} = {∀x(M(x)), ∀x(¬S(a)∨
¬M(x) ∨ ¬T (x)), ∀x(S(a) ∨N(x)), ∀x(T (x) ∨N(x)), ∀x(¬N(x))}.

M(x)
|

¬S(a) ∨ ¬M(x) ∨ ¬T (x)
� �

S(a) ∨N(x)p T (x) ∨N(x)p
′

| |
¬N(x)q ¬N(x) ∨ R(x)q

′

|
¬R(x)

Definition 15. Let (N,A, e, f, g, h) be a minimal assignment tree for ∆ and α.
Then, (N,A, e, f, g, h) is a consistent assignment tree if for any arcs (p, q),
(p′, q′) where Attacks(h(q), h(p)) = Assign(β, g(q)) for some β ∈ Units(e(q)) and

Attacks(h(q′), h(p′)) = Assign(β′, g(q′)) for some β′ ∈ Units(e(q′)), β ` β
′
holds

iff e(q) = e(p′).

Example 16. The following minimal assignment tree (N,A, e, f, g, h) with {e(p) |
p ∈ N} = {∀x∀y(¬Q(x, y)), ∀x∀y(P (a)∨¬P (b)∨Q(x, y)), ∀x(¬P (x)), ∀x(P (x))}
is not consistent because for q, q′, β = ∀x(¬P (x)) ∈ Units(e(q)), β′ = ∀x(P (x)) ∈

Units(e(q′)), β ` β
′
but e(q) 6= e(p′).

¬Q(x, y)
|

P (a) ∨ ¬P (b) ∨Q(x, y)p = p
′

� �

¬P (a)q P (b)q
′

An assignment tree (N ′, A′, e′, f ′, g′, h′) with the same tree structure as above
can be formed from the set of clauses {e(p) | p ∈ N ′} = {∀x∀y(¬Q(x, y)),
∀x∀y(P (a) ∨ ¬P (b) ∨ Q(x, y)), ¬P (a), P (b)}. In this case, (N ′, A′, e′, f ′, g′, h′)
satisfies the conditions of definition 15.

Using the definitions for minimality and consistency for an assignment tree
we have the following result.

Proposition 2. Let (N,A, e, f, g, h) be a complete, consistent grounded assign-
ment tree. Then 〈Φ, α〉 with Φ = {e(p) | p ∈ N} \ {¬α} is an argument.

5 Algorithms

In this section we present an algorithm to search for all the minimal and consis-
tent complete assignment trees for a unit clause α from a given knowledgebase
∆. If a grounded version of a complete assignment trees exists, then according
to proposition 2 this gives an argument for α.

Algorithm 1 builds a depth-first search tree T that represents the steps of
the search for arguments for a claim α from a knowledgebase ∆. Every node in
T is an assignment tree, every node is an extension of the assignment tree in
its parent node. The leaf node of every complete accepted branch is a complete
consistent assignment tree.

Reject(T), and Accept(T) are boolean functions which, given the current state
T of the search tree, test whether the leaf node of the currently built branch can
be expanded further. Reject(T) rejects the current branch of the search tree if the
assignment tree in its leaf node does not satisfy the conditions for an assignment
tree. Accept(T) checks whether a solution has been found. Hence, Accept(T)
tests whether the assignment tree in the leaf node of the currently built branch
is a complete assignment tree. When either of these functions returns true, the
algorithm rejects or outputs the current branch accordingly and the algorithm
backtracks and continues to the next node of tree T to be expanded. NextChild(T)
adds to T one of the next possible nodes for its current leaf. A next possible node
for the current branch can be any extension of the assignment tree contained in
its current leaf which satisfies the conditions of definition 11.

Algorithm 1 Build(T)

if Reject(T) then

return T = null

end if

if Accept(T) then

return T

S = NextChild(T)
end if

while S 6= null do

Build(S)
S = NextChild(T)

end while

The search is based on a graph structure whose vertices are represented by
clauses from ∆∪{¬α} and arcs link clauses φ, ψ for which Preattacks(φ, ψ) 6= ∅.
In fact, the algorithm works by visiting a subgraph of this graph which we call
the query graph of α in ∆. The query graph is the component (N,A) of the
graph where for each node φ ∈ N : (1) φ is linked to ¬α through a path in A and
(2) ∀ai ∈ Units(φ) there is a ψ ∈ N with ai ∈ Preattacks(φ, ψ). Hence, each unit
in each clause of the search space has a link in the query graph associated to it.
Figure 1 illustrates the structure of the query graph of α = ∃x∃y(Q(x, y)) in ∆
from example 12. The idea in building an assignment tree by using the structure
of the query graph, is to start from the negation of the claim and walk over the
graph by following the links and unifying the atoms of pairs of contradictory
literals connected with arcs. Hence, the algorithm at the same time follows the
arcs of the graph and also produces partial instances of the clauses it visits as the

unification of atoms indicates. The partial instances produced while walking over

∀x∀y(¬Q(x,y)) ∃x∀y(Q(x,y) ∨ R(x, y))

∀y(¬P (y)∨ Q(b, y)) Q(a, b) ∨ ¬N(a, b) ∀x(¬R(x,x) ∨ S(x, y))

¬Q(a, b) ∨ N(a, b)∀xP (x)∀y∃x(P (d)∨ P (a) ∨ M(x, y))

∀x∀y(¬M(x, y)) ∀x∀y(¬S(x, y))

Fig. 1. The query graph of α = ∃x∃y(Q(x,y)) in ∆. The negation of the claim ¬α =
∀x∀y(¬Q(x, y)) on the top left of the graph is the starting point for the search for
arguments for α.

the graph are generated with respect to the conditions of definitions 11, 12, 14
and 15. Every time a clause φ on the graph is visited, a node q for an assignment
tree is created with e(q) = φ. For this node, an existential-free instance of e(q)
is generated by substituting each of its existentially quantified variables with an
arbitrary constant that does not appear anywhere in ∆∪{¬α} or in the instances
already created during the search. This instantiation initializes the value g(q)
and sets the value f(q) for q: f(q) = Assign(e(q), g(q)). The value of h(q) is also
initialized at this stage to be equal to f(q). After node q has been initialized as
an assignment tree node, another instantiation process follows, which is based on
unifying the atoms of the contradictory units in h(q) and its parent with their
most general unifier. This updates values g(q) and h(q). Let p be the parent
of q in an assignment tree. If θ ⊂ ℘(B) is the the most general unifier of the
atoms of a pair of contradictory units from h(q) and h(p), then g(q) = g(q) ∪ θ
and h(q) = Assign(h(q), g(q)). Apart from node q, the values for g and h for
any other node in the assignment tree are also updated. Every time such a
unification binding is retrieved, its values are forwarded to the rest of the nodes
in the assignment tree. These values are assigned to any of the corresponding
clauses that can be associated through a sequence of arcs in the assignment tree
to the variables of e(q) and can therefore be affected by the bindings in θ.

Figure 2 represents the result of searching for arguments for α = ∃x∃y(Q(x, y))
using the query graph of figure 1. The result of the first branch of the search
tree (at the leaf) is a complete consistent assignment tree which by substituting
variable y in disjuncts M(f, y) and ¬M(f, y) by the same arbitrary constant
gives a complete grounded assignment tree. The leaf of the second branch corre-
sponds to a complete grounded assignment tree while the third branch is rejected
because for node p with e(p) = f(p) = h(p) = Q(a, b) ∨ ¬N(a, b) there is only
one arc in the graph that connects e(p) with a clause that contains a com-
plement of ¬N(a, b). This is clause ¬Q(a, b) ∨ N(a, b) but a child q of p with

¬Q(x, y)

¬Q(b, y)

|
¬P (y) ∨ Q(b, y)

¬Q(a, b)

|
Q(a, b) ∨ ¬N(a, b)

¬Q(e, y)

|
Q(e, y) ∨ R(e, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d) ∨ P (a) ∨ M(f, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d)

¬Q(e, e)

|
Q(e, e) ∨ R(e, e)

|
¬R(e, e) ∨ S(e, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d) ∨ P (a) ∨ M(f, y)

� �

¬P (a) ∨ Q(b, a) ¬M(f, y)

¬Q(b, d)

|
¬P (d) ∨ Q(b, d)

|
P (d) ∨ P (a) ∨ M(f, y)

� �

¬P (a) ∨ Q(b, a) ¬M(f, y)

|
¬Q(b, a)

Fig. 2. A search tree generated using algorithm 1 by exploring the graph in figure
1. Each node of this search tree represents an assignment tree which extends the as-
signment tree contained in its parent node by one level. For this the algorithm adds
clauses each of which preattacks their parent clause on a different unit. The atoms of
the contradictory units between a parent and a child clause are unified and the assign-
ments of the unification are passed on to any other clauses that can be affected in the
assignment tree of this node.

e(q) = ¬Q(a, b)∨N(a, b) cannot be created because there is no assignment g(q)
for which Attacks(h(q), h(p)) 6= null. The last branch of the search tree is re-
jected because adding node s with e(s) = ∀x(¬R(x, x) ∨ S(x, y)) as a child of
r with h(r) = Q(e, y) ∨ R(e, y) requires unifying R(x, x) with R(e, y) which up-
dates the value of g(r) to g(r) = {x/e, y/e} ∈ Prohibited(e(r)) and so condition
4 of the definition for an assignment tree is violated.

6 Discussion

Classical first-order logic has many advantages for representing and reasoning
with knowledge. However, in general it is computationally challenging to generate
arguments from a knowledgebase using classical logic. In this paper we propose a
method for retrieving arguments in a rich first-order language. We have provided
a theoretical framework, algorithms and theoretical results for this proposal.

References

1. L. Amgoud and C. Cayrol. A model of reasoning based on the production of
acceptable arguments. Annals of Math. and A.I., 34:197–216, 2002.

2. S. Benferhat, D. Dubois, and H. Prade. Argumentative inference in uncertain and
inconsistent knowledge bases. In Proceedings of the 9th Annual Conference on
Uncertainty in Artificial Intelligence (UAI 1993), pages 1449–1445, 1993.

3. Ph. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial
Intelligence, 128:203–235, 2001.

4. Ph. Besnard and A. Hunter. Practical first-order argumentation. In Proceedings
of the 20th American National Conference on Artificial Intelligence (AAAI’2005),
pages 590–595. MIT Press, 2005.

5. Ph. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.
6. C. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument. ACM

Computing Surveys, 32:337–383, 2000.
7. P. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for assumption-

based admissible argumentation. Artificial Intelligence, 170:114–159, 2006.
8. V. Efstathiou and A. Hunter. Algorithms for effective argumentation in classi-

cal propositional logic: A connection graph approach. In FoIKS, pages 272–290.
Springer, 2008.

9. M. Elvang-Gøransson, P. Krause, and J. Fox. Dialectic reasoning with classically
inconsistent information. In Proceedings of the 9th Conference on Uncertainty in
Artificial Intelligence (UAI 1993), pages 114–121. Morgan Kaufmann, 1993.

10. A. Garćıa and G. Simari. Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.

11. R. Kowalski. A proof procedure using connection graphs. Journal of the ACM,
22:572–595, 1975.

12. R. Kowalski. Logic for problem solving. North-Holland Publishing, 1979.
13. H. Prakken and G. Sartor. Argument-based extended logic programming with

defeasible priorities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.
14. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In

D. Gabbay, editor, Handbook of Philosophical Logic. Kluwer, 2000.
15. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.

ACM, 12(1):23–41, 1965.

