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Abstract Classical propositional logic is an appealing option for modelling argu-
mentation but the computational viability of generating an argument is an issue.
Here we propose ameliorating this problem by harnessing the notion of a connec-
tion graph to reduce the search space when seeking all the arguments for a claim
from a knowledgebase. For a set of clauses, a connection graph is a graph where
each node is a clause and each arc denotes that there exist complementary disjuncts
in the pair of nodes. For a set of formulae in conjunctive normal form, we use the
notion of the connection graph for the set of clauses obtained from the conjuncts
in the formulae. When seeking arguments for a claim, we can focus our search on
a particular subgraph of the connection graph that we call the focal graph. Loca-
ting this subgraph is relatively inexpensive in terms of computational cost. In addi-
tion, using (as the search space) the formulae of the initial knowledgebase, whose
conjuncts relate to this subgraph, can substantially reduce the cost of looking for
arguments. We provide a theoretical framework and algorithms for this proposal,
together with some theoretical results and some preliminary experimental results to
indicate the potential of the approach.

1. Introduction

Argumentation is a vital aspect of intelligent behaviour by humans. Consider diverse pro-
fessionals such as politicians, journalists, clinicians, scientists, and administrators, who
all need to collate and analyse information looking for pros and cons for consequences
of importance when attempting to understand problems and make decisions.

There are a number of proposals for logic-based formalisations of argumentation
(for reviews see [7,18,4]). These proposals allow for the representation of arguments for
and against some claim, and for counterargument relationships between arguments. In a
number of key examples of argumentation systems, an argument is a pair where the first
item in the pair is a minimal consistent set of formulae that proves the second item which
is a formula (see for example [2,11,3,1,12]). Proof procedures and algorithms have been
developed for finding preferred arguments from a knowledgebase using defeasible logic
and following for example Dung’s preferred semantics (see for example [5,20,17,14,6,
8,9]). However, these techniques and analyses do not offer any ways of ameliorating the
computational complexity inherent in finding arguments for classical logic.



Suppose we use an automated theorem prover (an ATP). If we seek arguments for a
particular claim α, we need to post queries to the ATP to ensure that a particular set of
premises entails α, that the set of premises is minimal for this, and that it is consistent.
So finding arguments for a claim α involves considering subsets Φ of ∆ and testing them
with the ATP to ascertain whether Φ ` α and Φ 6` ⊥ hold. For Φ ⊆ ∆, and a formula
α, let Φ?α denote a call (a query) to an ATP. If Φ classically entails α, then we get the
answer Φ ` α, otherwise we get the answer Φ 6` α. In this way, we do not give the
whole of ∆ to the ATP. Rather we call it with particular subsets of ∆. So for example,
if we want to know if 〈Φ, α〉 is an argument, then we have a series of calls Φ?α, Φ?⊥,
Φ \ {φ1}?α,...,Φ \ {φk}?α, where Φ = {φ1, .., φk}. So the first call is to ensure that
Φ ` α, the second call is to ensure that Φ 6` ⊥, the remaining calls are to ensure that there
is no subset Φ′ of Φ such that Φ′ ` α. This then raises the question of which subsets Φ
of ∆ to investigate when we are searching for an argument for α. Moreover, if we want
to find all arguments for a claim in ∆, in the worst case we need to consider all subsets
of ∆.

It is with these issues in mind that we explore an alternative way of finding all the
arguments from a knowledgebase ∆ for a claim α. Our approach is to adapt the idea of
connection graphs to enable us to find arguments. A connection graph [15,16] is a graph
where a clause is represented by a node and an arc (φ, ψ) denotes that there is a disjunct
in φ with its complement being a disjunct in ψ. In previous work [10], we have proposed
a framework for using connection graps for finding arguments. However, in that paper
we restricted consideration to knowledgebases of clauses and claims to being literals.
Furthermore, in that paper we did not give the algorithms for constructing the connection
graphs, but rather we focused on algorithms for searching through graph structures for
supports for arguments. Finally, we did not provide a systematic empirical evaluation
of the algorithms for constructing graphs. We address these three shortcomings in this
paper.

So, in this paper we propose algorithms for isolating a particular subset of the know-
ledgebase which essentially contains all the subsets of the knowledgebase that can be
supports for arguments for a given claim. Initially we restrict the language used to a
language of (disjunctive) clauses and we describe how arranging a clause knowledge-
base in a connection graph structure can help focusing on a subgraph of the initial one
that corresponds to the subset of a knowledgebase connected to a given clause. Further-
more, we illustrate how this approach can be generalised for a language of propositional
formulae in conjunctive normal form where the clauses of interest in this case are the
conjuncts of the negated claim for an argument. We describe how this method can be ef-
ficient regarding the search space reduction and hence, the computational cost of finding
arguments. Finally, we present some experimental results illustrating how the software
implementation of these algorithms performs.

2. Preliminaries

In this section, we review an existing proposal for logic-based argumentation [3] together
with a recent proposal for using connection graphs in argumentation [10].

We consider a classical propositional language with classical deduction denoted by
the symbol `. We use ∆,Φ, . . . to denote sets of formulae, φ, ψ . . . to denote formu-



lae and a, b, c . . . to denote the propositional letters each formula consists of. For the
following definitions we first assume a knowledgebase ∆ (a finite set of formulae) and
we use this ∆ throughout. Furthermore we assume that each of the formulae of ∆ is
in conjunctive normal form (i.e. a conjunction of one or more disjunctive clauses). We
use ∆ as a large repository of information from which arguments can be constructed
for and against arbitrary claims. The framework adopts a common intuitive notion of an
argument. Essentially an argument is a set of relevant formulae from ∆ that can be used
to minimally and consistently entail a claim together with that claim. In this paper each
claim is represented by a formula represented in conjunctive normal form.

Definition 1. An argument is a pair 〈Φ, φ〉 such that (1) Φ ⊆ ∆, (2) Φ 6` ⊥, (3) Φ `
φ and (4) there is no Φ′ ⊂ Φ s.t. Φ′ ` φ.

Example 1. Let ∆ = {¬a, (¬a ∨ b) ∧ c, (d ∨ e) ∧ f,¬b ∧ d, (¬f ∨ g) ∧ (a ∨ ¬e),¬e ∨
e,¬k ∨m,¬m}. Some arguments are : 〈{¬a, (d ∨ e) ∧ f},¬a ∧ (d ∨ e)〉, 〈{(¬a ∨ b) ∧
c,¬b ∧ d},¬a ∧ c〉, 〈{¬a},¬a〉, 〈{¬b ∧ d}, d〉.

We now turn to how the notion of connection graphs can be harnessed for focusing
the search for arguments. In this section we restrict consideration to clause knowledge-
bases as follows.

Definition 2. A language of clauses C is composed from a set of atoms A as follows:
If α is an atom, then α is a positive literal, and ¬α is a negative literal. If β is a
positive literal, or β is a negative literal, then β is a literal. If β1, .., βn are literals, then
β1 ∨ ... ∨ βn is a clause. A clause knowledgebase is a set of clauses.

We introduce relations on the elements of C, that will be used to determine the links
of graphs. We start by introducing the Disjuncts function which will be used for defining
the attack relations between pairs of clauses.

Definition 3. The Disjuncts function takes a clause and returns the set of disjuncts in
the clause, and hence Disjuncts(β1 ∨ .. ∨ βn) = {β1, .., βn}.

Definition 4. Let φ and ψ be clauses. Then, Preattacks(φ, ψ) = {β | β ∈ Disjuncts(φ)
and ¬β ∈ Disjuncts(ψ)}.

Example 2. Preattacks(a ∨ ¬b ∨ ¬c ∨ d, a ∨ b ∨ ¬d ∨ e) = {¬b, d}, Preattacks(a ∨
b ∨ ¬d ∨ e, a ∨ ¬b ∨ ¬c ∨ d) = {b,¬d}, Preattacks(a ∨ b ∨ ¬d, a ∨ b ∨ c) = ∅,
Preattacks(a ∨ b ∨ ¬d, a ∨ b ∨ d) = {¬d}, Preattacks(a ∨ b ∨ ¬d, e ∨ c ∨ d) = {¬d}.

Definition 5. Let φ and ψ be clauses. If Preattacks(φ, ψ) = {β} for some β, then
Attacks(φ, ψ) = β otherwise Attacks(φ, ψ) = null .

Example 3. Attacks(a∨¬b∨¬c∨d, a∨b∨¬d∨e) = null , Attacks(a∨b∨¬d, a∨b∨c) =
null , Attacks(a ∨ b ∨ ¬d, a ∨ b ∨ d) = ¬d, Attacks(a ∨ b ∨ ¬d, e ∨ c ∨ d) = ¬d.

Hence, the Preattacks relation is defined for any pair of clauses φ, ψ while the
Attacks relation is defined for a pair of clauses φ, ψ for which |Preattacks(φ, ψ)| = 1.

We now introduce some types of graphs where each node corresponds to a clause and
the links between each pair of clauses are determined according to the binary relations
defined above. In the following examples of graphs we use the |, �, � and —
symbols to denote arcs in the pictorial representation of a graph.



Definition 6. Let ∆ be a clause knowledgebase. The connection graph for ∆, denoted
Connect(∆), is a graph (N,A) where N = ∆ and A = {(φ, ψ) | there is a β ∈
Disjuncts(φ) such that β ∈ Preattacks(φ, ψ)}.

Example 4. The following is the connection graph for ∆ = {¬b,¬c∨¬g,¬c, f∨p,¬l∨
¬k, a∨b,¬b∨d, c∨g,¬h∨l, l∨k,¬a∨d,¬d,¬g, h∨¬l,¬k, n∨m∨¬q,¬m,¬n,m, q}

¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨m ∨ ¬q
| � | | | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q
| | | | |

¬a ∨ d — ¬d ¬g f ∨ p ¬k m

The attack graph defined below is a subgraph of the connection graph identified
using the Attacks function.

Definition 7. Let ∆ be a clause knowledgebase. The attack graph for ∆, denoted
AttackGraph(∆), is a graph (N,A) where N = ∆ and A = {(φ, ψ) | there is a β
∈ Disjuncts(φ) such that Attacks(φ, ψ) = β}.

Example 5. Continuing Example 4, the following is the attack graph for ∆.

¬b ¬c ∨ ¬g ¬c ¬h ∨ l — ¬l ∨ ¬k n ∨m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g h ∨ ¬l — l ∨ k ¬n ¬m q
| | | | |

¬a ∨ d — ¬d ¬g f ∨ p ¬k m

The following definition of closed graph introduces a kind of connected subgraph
of the attack graph where for each clause φ in the subgraph and for each disjunct β in φ
there is another clause ψ in the subgraph such that Attacks(ψ, φ) = β holds.

Definition 8. Let ∆ be a clause knowledgebase. The closed graph for ∆, denoted
Closed(∆), is the largest subgraph (N,A) of AttackGraph(∆), such that for each
φ ∈ N , for each β ∈ Disjuncts(φ) there is a ψ ∈ N with Attacks(φ, ψ) = β.

Example 6. Continuing Example 5, the following is the closed graph for ∆.

¬b ¬c n ∨m ∨ ¬q
| | | | |

a ∨ b — ¬b ∨ d c ∨ g ¬n ¬m q
| | | |

¬a ∨ d — ¬d ¬g m

The focal graph (defined next) is a subgraph of the closed graph for ∆ which is
specified by a clause φ from ∆ and corresponds to the part of the closed graph that
contains φ. In the following, we assume a component of a graph means that each node in
the component is connected to any other node in the component by a path.

Definition 9. Let ∆ be a clause knowledgebase and φ be a clause in ∆ which we call
the epicentre. The focal graph of φ in ∆ denoted Focal(∆, φ) is defined as follows: If



there is a component X in Closed(∆) containing the node φ, then Focal(∆, φ) = X ,
otherwise Focal(∆, φ) is the empty graph.

Example 7. Continuing Example 6, the following is the focal graph of ¬b in ∆,

¬b
|

a ∨ b — ¬b ∨ d
| |

¬a ∨ d — ¬d

The last example illustrates how the notion of the focal graph of an epicentre φ in ∆
can be used in order to focus on the part of the knowledgebase that is relevant to φ. Later
we will describe why the focal graph is important when it relates to a claim and how it
can be used to reduce the search space when looking for arguments from propositional
knowledge in conjunctive normal form.

Proposition 1. Let ∆ be a set of clauses. Then, ∀γi, γj ∈ ∆, either Focal(∆, γi) and
Focal(∆, γj) are the same component or they are disjoint components.

3. Algorithm for finding the focal graph

In this section we present the algorithm (Algorithm 1) that returns the set of nodes
of the focal graph of an epicentre φ in a clause knowledgebase ∆. The GetFocal(∆, φ)
algorithm finds the focal graph of φ in ∆ by a depth first search following the links
of the component of the AttackGraph(∆) that is linked to φ. For this, we have a data
structure Nodeψ (for each ψ ∈ ∆) that represents the node for ψ in AttackGraph(∆).
The attack graph can be represented by an adjacency matrix. Initially all the nodes are
allowed as candidate nodes for the focal graph of φ in ∆, and then during the search
they can be rejected if they do not satisfy the conditions of the definition for the fo-
cal graph. The algorithm chooses the appropriate nodes by using the boolean method
isConnected(C,Nodeψ) which tests whether a node Nodeψ of the attack graph C =
(N,A) is such that each literal β ∈ Disjuncts(ψ) corresponds to at least one arc to an
allowed node (i.e. ∀β ∈ Disjuncts(ψ),∃Nodeψ′ ∈ AllowedNodes s.t. Attacks(ψ,ψ′) =
β), and so it returns false when there is a β ∈ Disjuncts(ψ) for which there is no
Nodeψ′ ∈ AllowedNodes s.t. Attacks(ψ,ψ′) = β. If this method does return false for
a Nodeψ , then Nodeψ is rejected and the algorithm backtracks to retest whether its ad-
jacent allowed nodes are still connected. If some of them are no longer connected, they
are rejected and in the same way their adjacent allowed nodes are tested recursively.

In the next section we show how this algorithm can be used for the generalised pro-
blem of finding arguments for any propositional formula when expressed in conjunctive
normal form.

4. Using the focal graph algorithm for formulae in conjunctive normal form

To explain how the restricted language of clauses and Algorithm 1, can be used to deal
with formulae (and thereby extend the proposal in [10]) we will first give some new



Algorithm 1 GetFocal(∆, φ)
Let C = (N,A) be the attack graph for ∆ and φ
Let AllowedNodes = {Nodeψ | ψ ∈ N}
Let VisitedNodes be the empty set.
if φ 6∈ ∆ or ¬isConnected(C,Nodeφ) then

return ∅
else

Let S be an empty Stack
push Nodeφ onto S

end if
while S is not empty do

Let Nodeψ be the top of the stack S
if Nodeψ ∈ AllowedNodes then

if isConnected(C,Nodeψ) then
if Nodeψ ∈ VisitedNodes then

pop Nodeψ from S
else

VisitedNodes = VisitedNodes ∪ {Nodeψ}
pop Nodeψ from S
for all Nodeψ′ ∈ AllowedNodes with Attacks(ψ,ψ′) 6= null do

push Nodeψ′ onto S
end for

end if
else

AllowedNodes = AllowedNodes \ {Nodeψ}
VisitedNodes = VisitedNodes ∪ {Nodeψ}
pop Nodeψ from S.
for all Nodeψ′ ∈ (AllowedNodes \ VisitedNodes) with Attacks(ψ,ψ′) 6= null
do

push Nodeψ′ onto S
end for

end if
else

pop Nodeψ from S
end if

end while
return AllowedNodes ∩ VisitedNodes

subsidiary definitions. For the following we assume a formula is in conjunctive normal
form and a set of formulae contains formulae in conjunctive normal form.

Definition 10. Let ψ = γ1 ∧ . . . ∧ γn be a formula. The Conjuncts(ψ) function returns
the clause knowledgebase {γ1, . . . , γn}.

Example 8. For φ = (a∨b)∧(a∨d∨¬c)∧¬e, Conjuncts(φ) = {a∨b, a∨d∨¬c,¬e}.

Definition 11. Let Φ = {φ1, . . . , φk} be a set of formulae. The SetConjuncts(Φ) func-
tion returns the union of all the conjuncts of the formulae from the set: SetConjuncts(Φ) =



⋃
φi∈Φ Conjuncts(φi).

Example 9. For Φ = {¬a, (a∨b)∧¬d, (c∨d)∧ (e∨f ∨¬g),¬d}, SetConjuncts(Φ) =
{¬a, a ∨ b,¬d, c ∨ d, e ∨ f ∨ ¬g}.

Let ψ = δ1 ∧ . . . ∧ δn be a formula and let ψ denote the conjunctive normal form
of the negation of ψ, and so ψ = γ1 ∧ . . . ∧ γm ≡ ¬ψ. Then, if we seek supports for
arguments for ψ from a knowledgebase Φ = {φ1, . . . , φk}, instead of searching among
the arbitrary subsets of Φ, we can search among the subsets of Φ that consist of formulae
whose conjuncts are contained in one of the focal graphs of each γi in SetConjuncts(Φ∪
{ψ}). For this we need the notion of the SubFocus and the SupportBase defined next.

Definition 12. Let Φ be a knowledgebase and ψ ∈ Φ. Then for each γi ∈ Conjuncts(ψ),
SubFocus(Φ, γi) = Focal(SetConjuncts(Φ), γi).

Example 10. Let Φ = {(a∨b)∧(f∨p)∧¬c, (¬a∨d)∧(¬c∨¬g),¬d,¬d∧(¬h∨l), q∧
(¬h∨l), c∨g,¬g,¬b,¬b∨d, l∨k,m∧(¬l∨¬k),¬k∧(n∨m∨¬q), h∨¬l,¬m∧¬n,m∧
q}. Then, Conjuncts(Φ) is equal to ∆ from example 4. Let φ = (a∨b)∧(f ∨p)∧¬c, and
let γ1 denote a∨b, γ2 denote f∨p and γ3 denote ¬c. So, if SubFocus(Φ, γ1) = (N1, A1),
SubFocus(Φ, γ2) = (N2, A2) and SubFocus(Φ, γ3) = (N3, A3) thenN1 = {a∨b,¬a∨
d,¬d,¬b,¬b ∨ d}, N2 = ∅, and N3 = {¬c, c ∨ g,¬g}.

The following definition introduces the notion of the query graph of a formula ψ
in a knowledgebase Φ, which is a graph consisting of all the subfocuses of each of the
γi ∈ Conjuncts(ψ) in Conjuncts(Φ ∪ {ψ}). For a graph C = (N,A) we let the func-
tion Nodes(C) return the set of clauses corresponding to the nodes of the graph (i.e.
Nodes(C) = N ).

Definition 13. Let Φ be a knowledgebase and ψ be a formula. The query graph of ψ in
Φ denoted Query(Φ, ψ) is the closed graph for the nodes⋃

γi∈Conjuncts(ψ)

Nodes(SubFocus(Φ ∪ {ψ}, γi))

Example 11. Let Φ′ = {(¬a ∨ d) ∧ (¬c ∨ ¬g),¬d,¬d ∧ (¬h ∨ l), q ∧ (¬h ∨ l), c ∨
g,¬g,¬b,¬b∨ d, l ∨ k,m∧ (¬l ∨¬k),¬k ∧ (n∨m∨¬q), (h∨¬l),¬m∧¬n,m∧ q}
and let ψ = (¬a∨¬f ∨ c)∧ (¬a∨¬p∨ c)∧ (¬b∨¬f ∨ c)∧ (¬b∨¬p∨ c). For Φ′ and ψ
we have ψ = (a∨ b)∧ (f ∨ p)∧¬c, which is equal to φ from Example 10 and Φ′ ∪ {ψ}
is equal to Φ from Example 10. Hence, continuing Example 10, the query graph of ψ in
Φ is presented below and consists of the subgraphs (N1, A1), (N2, A2) and (N3, A3).

¬b ¬c
| |

a ∨ b — ¬b ∨ d c ∨ g
| | |

¬a ∨ d — ¬d ¬g

Hence, using each of the conjuncts γi of ψ as the epicentre for the focal graph in
SetConjuncts(Φ ∪ {ψ}) we obtain the components of the query graph of ψ in Φ. The
following definition introduces the notion of a zone, which relates each clause from each
such subfocus to one or more formulae from knowledgebase Φ.



Definition 14. Let Φ be a knowledgebase and ψ be a formula. Then, for each γi ∈
Conjuncts(ψ),

Zone(Φ, γi) = {φ ∈ Φ | Conjuncts(φ) ∩ Nodes(SubFocus(Φ ∪ {ψ}, γi) 6= ∅}.

Example 12. Continuing Example 11, for each γi ∈ Conjuncts(ψ), i = 1 . . . 3 we have
Zone(Φ′, γ1) = {(¬a∨d)∧(¬c∨¬g),¬d,¬b,¬b∨d,¬d∧(¬h∨ l)}, Zone(Φ′, γ2) = ∅
and Zone(Φ′, γ3) = {c ∨ g,¬g}.

The supportbase defined next, relates the clauses from the query graph of a formula
ψ in a knowledgebase Φ to the corresponding set of formulae from Φ.

Definition 15. For a knowledgebase Φ and a formula ψ the supportbase is given as
follows:

SupportBase(Φ, ψ) =
⋃

γi∈Conjuncts(ψ)

Zone(Φ, γi)

Example 13. Continuing Example 11, SupportBase(Φ, ψ) = {(¬a ∨ d) ∧ (¬c ∨
¬g),¬d,¬b,¬b ∨ d,¬d ∧ (¬h ∨ l), c ∨ g,¬g}

According to the following proposition, the SupportBase(Φ, ψ) defined above is the
knowledgebase that contains all the arguments for ψ from Φ.

Proposition 2. Let Φ be a knowledgebase and ψ be a formula. If 〈Ψ, ψ〉 is an argument
from Φ and Ψ ⊆ Φ, then Ψ ⊆ SupportBase(Φ, ψ).

Hence, by Proposition 2 it follows that instead of using the power set of the initial
knowledgebase Φ in order to look for arguments for ψ, we can use the power set of
SupportBase(Φ, ψ). Using these definitions, we can introduce the additional algorithms
that delineate the extension of the language of clauses used in previous sections and the
use of Algorithm 1 to support a language of propositional formulae in conjunctive normal
form. These are Algorithm 2 and Algorithm 3. Since our problem is focused on searching
for arguments for a claim ψ, the part of the knowledgebase that we want to isolate will
be delineated by ψ and, in particular, by the conjuncts of ψ. Algorithm 2 returns the
query graph of ψ in Φ as a set containing all the SubFocus(Φ ∪ {ψ}, γi) components
for each γi ∈ Conjuncts(ψ). Then, Algorithm 3 uses these results in order to retrieve
the set of formulae from the initial knowledegbase to which each such set of conjuncts
corresponds. So, Algorithm 3 returns a set of sets, each of which represents a zone for
each γi ∈ Conjuncts(ψ). The union of all these sets will be SupportBase(Φ, ψ).

In Algorithm 2 we can see that it is not always necessary to use Algorithm 1 for
each of the γi ∈ Conjuncts(ψ) when trying to isolate the appropriate subsets of Φ.
Testing for containment of a clause γj ∈ Conjuncts(ψ) in an already retrieved set
SubFocus(Φ ∪ {ψ}, γi), i < j (where the ordering of the indices describes the or-
der in which the algorithm is applied for each of the conjuncts) is enough to give the
SubFocus(Φ∪ {ψ}, γj) according to proposition 1. Furthermore, according to the follo-
wing proposition, conjuncts of ψ within the same SubFocus correspond to the same set
of formulae from Φ.



Algorithm 2 GetQueryGraph(Φ, ψ)

Let ψ be ¬ψ in CNF : ψ ≡ γ1 ∧ . . . ∧ γm
Let S be a set to store sets of clauses, initially empty
Let Clauses = SetConjuncts(Φ ∪ {ψ})
for i = 1 . . .m do

if ∃Sj ∈ S s.t. γi ∈ Sj then
i = i+ 1

else
Si = GetFocal(Clauses, γi)

end if
S = S ∪ {Si}

end for
return S

Proposition 3. Let Φ be a set of formulae and let ψ be a formula. If SubFocus(Φ ∪
{ψ}, γi) = SubFocus(Φ∪{ψ}, γj) for some γi, γj ∈ Conjuncts(ψ), then Zone(Φ, γi) =
Zone(Φ, γj).

The converse of the last proposition does not hold as the following example illus-
trates.

Example 14. For Φ = {(c∨g)∧d, d∨f,¬q, (d∨p)∧f,¬n, k∨¬m} and ψ = c∨ g∨d
we have ψ = ¬c∧¬g∧¬d and N1 ≡ SubFocus(Φ∪{ψ},¬c) = {¬c,¬g, c∨g}, N2 ≡
SubFocus(Φ∪{ψ},¬g) = {¬c,¬g, c∨ g} = N1 and N3 ≡ SubFocus(Φ∪{ψ},¬d) =
{¬d, d}. Furthermore, Zone(Φ,¬c) = Zone(Φ,¬g) = Zone(Φ,¬d) = {(c ∨ g) ∧ d}
although N3 6= N2 and N3 6= N1.

Hence, conjuncts of ψ with the same focal graph correspond to the same support-
base. Taking this into account, the following algorithm retrieves all the supportbases for
each γi ∈ Conjuncts(ψ).

Algorithm 3 RetrieveZones(Φ, ψ)
Let Z be a set to store sets of formulae, initially empty
Let S = GetQueryGraph(Φ, ψ) ≡ {S1, . . . , Sk}
for i = 1 . . . k do

Let Zi be the emptyset.
for j = 1 . . . |Si| do

Let γj be the j-th element of Si
Let Cj = {φ ∈ Φ | γj ∈ Conjuncts(φ)}
Zi = Zi ∪ Cj

end for
Z = Z ∪ {Zi}

end for
return Z

So, Algorithm 3 returns a set of sets, corresponding to all the possible zones identi-
fied by all the γi ∈ Conjuncts(ψ). The union of all these sets will be SupportBase(Φ, ψ).



Instead of looking for arguments forψ among the arbitrary subsets of SupportBase(Φ, ψ),
we can search the power set of each non empty Zone(Φ, γi) separately as the following
proposition indicates.

Proposition 4. Let Φ be a knowledgebase and ψ be a clause. If 〈Ψ, ψ〉 is an argument
from Φ, then there is a γi ∈ Conjuncts(ψ) s.t Ψ ⊆ Zone(Φ, γi).

In future work we plan to address the efficiency of using the subsets of each zone
separately instead of using the power set of the supportbase in our search for arguments.
We conjecture that this will improve the performance on average for finding arguments.

5. Experimental results

This section covers a preliminary experimental evaluation of algorithm 1 using a proto-
type implementation programmed in java running on a modest PC (Core2 Duo 1.8GHz).

The experimental data were obtained using randomly generated clause knowledge-
bases of a fixed number of 600 clauses according to the fixed clause length model K-SAT
([19,13]) where the chosen length (i.e. K) for each clause was either a disjunction of 3
literals or a disjunction of 1 literal. The clauses of length 3 can be regarded as rules and
clauses of length 1 as facts. Each disjunct of each clause was randomly chosen out of a
set of N distinct variables (i.e. atoms) and negated with probability 0.5.

In the experiment, we considered two dimensions. The first dimension was the
clauses-to-variables ratio. For the definition of this ratio we take the integer part of the di-
vision of the number of clauses in ∆ by the number of variables N (i.e. b|∆|/|N |c). The
second dimension was the proportion of facts-to-rules in the knowledgebases tested. The
preliminary results are presented in Figure 1 where each curve in the graph corresponds
to one of those variations on the proportion of facts-to-rules. More precisely, each curve
relates to one of the following (n, n′) tuples where n represents the number of facts and
n′ represents the number of rules in the set: (150,450), (200,400), (300,300), (400,200),
(450,150). Since each clause knowledgebase contains 600 elements, each of these tuples
sums to 600. Each point on each curve is the average focal graph size from 1000 re-
petitions of running Algorithm 1 for randomly generated epicentres and randomly ge-
nerated knowledgebases of a fixed clauses-to-variables ratio represented by coordinate
x. For the results presented, since the values on axis x ranges from 1 to 15, the smal-
lest number of variables used throughout the experiment was 40 which corresponds to
a clauses-to-variables ratio of 15, while the largest number of variables used was 600
which corresponds to a clauses to variables ratio of 1.

The evaluation of our experiment was based on the size of the focal graph of an
epicentre in a clause knowledgebase compared to the cardinality of the knowledgebase.
For a fixed number of clauses, the number of distinct variables that occur in the disjuncts
of all these clauses determines the size of the focal graph. In Figure 1 we see that as the
clauses-to-variables ratio increases, the average focal graph size also increases because
an increasing clauses-to-variables ratio for a fixed number of clauses implies a decrea-
sing number of variables and this allows for a distribution of the variables amongst the
clauses such that it is more likely for a literal to occur in a clause with its opposite oc-
curing in another clause. We have noticed in previous experiments [10] that for a clause
knowledgebase consisting of 3-place clauses only, an increasing clauses-to-variables ra-
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Figure 1. Focal graph size variation with the clauses-to-variables ratio

tio in the range [5, 10] ameliorates the performance of the system as it increases the pro-
bability of a pair of clauses φ, ψ from ∆ being such that |Preattacks(φ, ψ)| > 1. This is
because a ratio in this range makes the occurrence of a variable and its negation in the
clauses of the set so frequent that it allows the Attacks relation to be defined only on
a small set of clauses from the randomly generated clause knowledgebase. In the graph
presented in this paper though, this is less likely to happen as the clause knowledgebases
tested involve both facts and rules.

Including literals (facts) in the knowledgebases used during the experiment makes
the repeated occurrence of the same fact and its complement in the randomly generated
clause knowledgebases, and hence in the subsequent focal graph, more frequent. It is for
this reason that the curves with lower facts-to-rules proportion have a lower average focal
graph (for each clauses-to-variables ratio). The symbol • on each of the curves indicates
the highest possible clauses-to-variables ratio that would allow for a randomly genera-
ted clause knowledgebase consisting of the corresponding proportion of facts and rules
to contain only distinct elements. Hence, for the data presented in this graph, the lar-
gest average focal graph of a randomly generated clause in a randomly generated clause
knowledgebase of 600 distinct elements has the value 343.99 which corresponds to 57%
of the initial knowledgebase. The values of the parameters with which this maximum is
obtained correspond to a clauses-to-variables ratio equal to 4 on knowledgebases with a
1 to 1 proportion of facts-to-rules.

The average time for each repetition of the algorithm ranged from 6.3 seconds (for
a facts-to-rules proportion of 1-3) to 13.8 seconds (for a facts-to-rules proportion of 3-
1). So, the results show that for an inexpensive process we can substantially reduce the
search space for arguments.



6. Discussion

In this paper, we have proposed the use of a connection graph approach as a way of
ameliorating the computation cost when searching for arguments. We have extended the
theory and algorithms proposed in previous work [10] for a language of clauses so as
to deal with any set of propositional formulae provided that these are represented in
conjunctive normal form. We have provided theoretical results to ensure the correctness
of the proposal, and we have provided provisional empirical results to indicate the po-
tential advantages of the approach.
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