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Abstract. Multimodal human to human interaction requires inte-
gration of the contents/meaning of the modalities involved. Artificial
Intelligence (AI) multimodal prototypes attempt to go beyond techni-
cal integration of modalities to this kind of meaning integration that
allows for coherent, natural, “intelligent” communication with hu-
mans. Though bringing many multimedia-related AI research fields
together, integration and in particular vision-language integration is
an issue that remains still in the background. In this paper, we attempt
to make up for thislacunaby shedding some light on how, why and
to what extent vision-language content integration takes place within
AI. We present a taxonomy of vision-language integration prototypes
which resulted from an extensive survey of such prototypes across a
wide range of AI research areas and which uses a prototype’s inte-
gration purpose as the guiding criterion for classification. We look
at the integration resources and mechanisms used in such prototypes
and correlate them with theories of integration that emerge indirectly
from computational models of the mind. We argue that state of the
art vision-language prototypes fail to address core integration chal-
lenges automatically, because of human intervention in stages dur-
ing the integration procedure that are tightly coupled with inherent
characteristics of the integrated media. Last, we present VLEMA, a
prototype that attempts to perform vision-language integration with
minimal human intervention in these core integration stages.

1 INTRODUCTION

One of the characteristics that define multimedia systems isintegra-
tion, the ability to combine all necessary hardware and software com-
ponents in the same system forming a whole that allows the use of
multimodal input and the subsequent presentation, storage, transmis-
sion and technical processing of this multimodal information. State
of the art multimedia systems are extremely efficient in this, achiev-
ing not only “off-line” integration, but also real-time, over the net-
work one. Apart from this technical integration though, integration
of themeaningcarried by each modality is important in multimodal
situations. The computational integration of the content of multiple
modalities and of visual and linguistic ones in particular, is an Ar-
tificial Intelligence (AI) aspiration that goes back to the very early
days of the field2. However, the level computational vision-language
integration reached since and the means used for accomplishing it
are issues that have not been addressed thoroughly and remain still
to be answered. In performing a “reality check” —and therefore
addressing these issues— one may bring content integration to the
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2 Cf. for example Kirsch who was one of the first to mention that logic could
be used as an internal stage of communication for the parallel analysis of
text and pictures and indicated problems in developing grammars for the
syntactic analysis of drawings similar to the ones for text analysis [14].

foreground and render it the common perspective from which “in-
tellimedia” [16] spanning a wide range of AI research areas from
cross-modal information retrieval to robotics are brought together.
The gains from doing so are significant; tendencies, practices, lacu-
nae and needs can be identified more easily and directions for dealing
with existing problems can emerge directly.

In this paper, we attempt to perform such a “reality check” of
vision-language content integration in AI. We first present four cat-
egories of vision-language prototypes, which provide anextensional
definition of vision-language content integration. Then, we present
the intensionaldefinition of integration as it emerges from the in-
dication of the integration resources and mechanisms used in these
systems. Based on these findings, we correlate AI integration prac-
tices with theories of integration, which emerge from computational
models of the mind indirectly. We argue that state of the art vision-
language integration systems fail to perform real integration of these
modalities, because they rely on human created data for compensat-
ing for the features vision and language inherently lack. We conclude
by presenting VLEMA, a prototype that points to directions vision-
language integration research could take for addressing integration
challenges with minimal human intervention.

2 DEFINING INTEGRATION THROUGH
CLASSIFICATION

Vision-language integration has been attempted in AI research fields
for a wide variety of tasks and application domains. There is only one
survey published in the mid-nineties that attempts to present the state
of the art in vision-language integration systems [26]. However, apart
from the fact that this survey refers to limited work in the field from
the eighties up to 1994, it actually mixes theoretical suggestions and
implemented prototypes commenting only sparsely on how integra-
tion is attempted. The research reviewed in that survey is classified
according to the medium of the input,i.e. language, images or both;
this classification though does not capture classification dimensions
of the systems that go beyond application tasks and domains. Most
importantly, it includes research that does not actually perform con-
tent integration, such as work on text-based image retrieval and work
on prototypes that perform what one could callquasi-integration.

The latter refers to cases of fusion of results obtained by sequen-
tial modality-dependent processes that one may easily mistake for
some form of content integration. A characteristic example comes
from the video retrieval, summarization and skimming research. We
refer to cases when both natural language and image processing tech-
nologies are used, the former for topic detection within video files
and the latter for identifying the exact boundaries of the video seg-
ments that present each specific topic and the key frames within each
segment, cf. for example [19]. In such cases, the results obtained
from analysing one modality,i.e. speech or text, create the neces-
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sary conditions for processing the other (video frames) effectively
and refining the final output. Though both technologies are used, no
integration of their output takes place. Either the intersection of the
results produced by each process is the final output of the system
or the results from the one process are used to constrain the search
space for the other, reducing actually the set of possible image/text
candidates. Optical Character Recognition (OCR) technology could
also be thought of as a kind of integration performing technology
that goes from the image of a text to raw text for input to a language
processor. Though this technology may make use of knowledge of
the linguistic system to recover from errors, it does not perform any
kind of content integration. It performs pattern recognition in order
to extract the characters from the image, as it would for extracting
any texture from an image. These patterns are not transformed in a
format suitable for language processing, theyare in the right format
anyway and the task is exactly that, to extract them in a precise and
effective way.

In a recent introductory chapter on natural language and multi-
modal AI systems, references to multimodal integration have been
made and some categories of multimodal systems involving language
have been presented [2]. However, being an introduction to the field,
the chapter is quite general, the boundaries of the categories men-
tioned are not clearly defined, integration issues and in particular
vision-language integration are not in focus at all (most examples
involve gestures and language) and multimodal integration is briefly
mentioned as a multimodal input fusion function, which is a very
vague way of defining integration. So, how could integration be de-
fined and which types of prototypes that involve vision and language
do actually perform integration?

In reviewing AI prototypes for which vision-language integration
is asine qua nonfeature for performing a task, we indicated four gen-
eral categories of such systems. The criterion guiding this classifica-
tion was theintegration purposeserved by each system and there-
fore, the four categories identified express four general integration
purposes served by the corresponding prototypes. Classifying mul-
timodal prototypes from this perspective contributes in anin depth
understanding of both:

• the forms vision-language integration has taken in AI, and
• the level state-of-the-art integration systems have reached and the

integration means they have used

The former provides anextensionaldefinition of integration, while
the latter points to anintensionaldefinition. Furthermore, the inte-
gration purpose criterion provides the common perspective required
for classifying systems, which have been developed in diverse AI
research areas.

2.1 An extensional definition

Table 1 illustrates the four system categories we have identified in a
survey of more than fifty prototypes that span many decades, from
SHRDLU [29], which has been considered to be the first vision-
language integration system [26], to conversational robot prototypes
of the new millennium [23, 25]. These categories provide a general
enumeration of the processes the termintegration applies to, they
describe what it is that actually constitutesintegration and could
therefore be thought of as itsextensional definition. In particular, the
first category includesperformance enhancementintegration proto-
types such as PICTION [27]3; these systems analyse information

3 We give only a few examples of prototypes that belong to each category
because of the space constraints of this paper

Table 1. The four categories of integration prototypes

SYSTEM TYPE INTEGRATION PROCESS
Performance Mediumx analysis=>
Enhancement Mediumy analysis
Media Source medium analysis=>
Translation Target medium generation
Multimedia Abstracted data=>
Generation Multimedia generation
Situated Multimedia Analysis=>
Multimodal Dialogue Medium/multimedia generation

expressed in a specific medium in order to extract information that
will give more accurate specifications for the analysis of information
in another medium. Integration takes place mainly when the output of
the analysis of one medium is used for constraining or even guiding
the analysis of another medium. Most of the systems in this category
use natural language derived information to enhance their image un-
derstanding capabilities.

The second category includesmedia translation systems, i.e. sys-
tems that allow for the generation of one medium given another.
These systems treat the image-language relation as one of “mutual
exclusion”: they allow for a specific task to be performed using only
language or only images and not a combination thereof. Therefore,
they go from medium analysis to medium generation, translating the
information expressed in the source medium into a target medium.
Going from one medium to another with the less possible loss of
information requires that the source information be expressed in a
common content description format and that mechanisms for dealing
with the specific nature of the target medium exist and this is where
the integration challenge lies for this type of systems. With systems
such as SOCCER [3] that go from images to language, one gets in-
volved with Natural Language Generation, while with ones going
from text to images, such as WordsEye [7], one crosses over into the
field of Computer Graphics.

Multimedia generation systemsin their turn, start from a specific
format of the message to be conveyed and realise this message with
the best possible media combination. These are the so-called Intel-
ligent Multimedia Presentation Systems (IMMPS) [16]. There are
IMMPSs, such as SAGE [21], that starting from a goal to be attained
and tabular, numerical data they generate information graphics and
associated text; these systems visualise and describe abstract data. On
the other hand, systems such as MAGIC [17], start from a knowledge
representation of the message to be conveyed and realise it through
a media combination. Integration in both cases is more or less sup-
ported via both a content representation formalism, that is itself a
means of performing media integration, and the media co-ordination
phase that aims at a coherent and consistent output. Since decisions
and choices for achieving the multimedia presentation and the co-
ordination are made throughout the whole process and are dependent
upon the output of various modules, the architecture of these systems
is such that serves integration purposes too.

Contrary to multimedia generation systems,situated dialogue in-
tegration systemsperform bothmedium analysisandmedium gen-
eration. Most of the systems allow for natural language interface
with the user with whom they also share a visual environment.
The systems are able to react to the input by providing multi-
modal or monomodal answers or/and modifying their visual envi-
ronment. Therefore, thedialoguethat takes place refers always to a
visually perceptiblesituation shared by both the user and the ma-
chine. To be included in this category, the system must be able to
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track changes in the visual environment or analyse it automatically;
question-answering regarding a visually shared,a priori known and
unchangeable environment is not covered, since it does not involve
visual analysis or generation capabilities in any way, just mere in-
teraction with information on the visual environment pre-stored in a
database. We view dialogue from the wider perspective of human-
machine interaction, which does not necessarily involve verbal reac-
tions/answers on the part of the machine, but any kind of reaction, in
any modality, which demonstrates efficient communication with the
user. SHRDLU belongs to this type of systems as well as conversa-
tional robots do.

2.2 An intensional definition

The visual and linguistic modalities analysed/generated by vision-
language integration prototypes are quite different (e.g. 3D graphics,
photographs, drawings and text, speech respectively), as the applica-
tion tasks and domains they cover are too. Table 2 provides details
on the example systems mentioned in section 2.1.

Table 2. Details of some integration prototypes

SYSTEM CASSIE
INPUT Speech (EN), blocksworld (3D)
INTEGR. RESOURCES KL-PML association lists
INTEGR. MECHANISMS Unification
OUTPUT Object identification, limited conversation
SYSTEM MAGIC
INPUT Choice of patient file
INTEGR. RESOURCES Schemas

Schema instantiation,
INTEGR. MECHANISMS media conductor module,co-reference
OUTPUT Speech/text (EN), graphics (animation)
SYSTEM PICTION
INPUT Photographs (people) and captions (EN)
INTEGR. RESOURCES Integrated Knowledge Base

(lexical info, object schemas)
INTEGR. MECHANISMS Semantic Networks
OUTPUT Face identification
SYSTEM SOCCER
INPUT Image sequences (soccer-video),

manually extracted trajectories
INTEGR. RESOURCES GSD per frame,

event models (objects+course diagram)
Event model instantiation

INTEGR. MECHANISMS (labelled directed graphs),
event selection, verbalisation history

OUTPUT Text event description (GER)

These example systems have been classified into different cate-
gories; however, they all seem to make use of integration resources
that capture similar information, though represented and instanti-
ated differently. The integration resources associate visual and cor-
responding linguistic information in various forms; CASSIE for ex-
ample has association lists that link conceptual terms and their cor-
responding instances and attributes to perceptual-motor related lex-
emes and their low-level n-ary tuples of visual feature-values and
functions (the latter implement action-denoting expressions). Sim-
ilarly, other systems use integrated knowledge bases consisting of
lexical information and corresponding object schemas, associations
between object names, properties and the visual state of a scene,
event models and corresponding geometric scene descriptions (GSD)
etc. The knowledge representation format used for encoding such as-
sociations determines (or is determined by) the association instanti-

ation mechanism; schemas, frames and semantic networks are just
a few of the mechanisms used. In most cases, integration mecha-
nisms go beyond the instantiation of vision-language associations to
inference depiction/verbalisation rules, media allocation, discourse
history and cross-modal reference generation modules, layout co-
ordination modules and even incremental or blackboard architectures
that allow for constant communication between media-specific mod-
ules; all these mechanisms facilitate integration and compliment any
association instantiation mechanisms.

The ways through which integration is performed provide the
genus et differentiarequired for anintensionaldefinition of the term.
Computational vision-language integration is theprocess(genus) of
establishing associations between visual and linguistic pieces of in-
formation (differentia). The means for establishing such associations
vary —as mentioned earlier in detail— according to the integration
purpose served by a system.

2.3 EMERGING THEORIES OF INTEGRATION

It is true that the idea of using vision-language integration resources
with information regarding the name and visual features of objects
depicted in images along with links to the image regions they occupy
has been proposed at least since the seventies [4]. Recent work on
the construction of multimodal thesauri relies on similar, manually
constructed associations of image segments, image feature-vectors
and the corresponding lexical items and concepts [28]. However, in
searching for a theoretical framework underlying the way AI proto-
types have approached integration issues, one realises that not only
there is no integration theory within AI, but integration has only in-
directly been described in cognitive science too4. Fodor’s computa-
tional model of the mind is a characteristic example of such a lack of
integration theories. In this model it is argued that the outputs of both
language and vision (perceptual systems) are expressed in a format
appropriate for the central (cognitive) processes into which they are
fed [8]. However, the nature of this format and the modality-specific
processes required in both vision and language for encoding their
output accordingly is something Fodor not only avoids to explain,
but he also argues that it is impossible to explain with current scien-
tific paradigms [9].

On the other hand, looking at Minsky’s theory of thesociety of
mind, one can only find implicit references to integration in his de-
scriptions of how linguistic and perceptual knowledge/information
are associated. Minsky seems to see integration as an activation
spreading procedure that makes use oflearned associations be-
tween linguistic data and sensory attribute-values [18]. This points to
the fact that, similarly, computational integration requires machine-
learning acquisition of such associations rather than manually con-
structed ones. Though there are attempts to automate learning of such
associations in AI [22], no research prototype has been developed yet
that incorporates such learning mechanisms for use in multimodal
scenarios [30].

More specific suggestions regarding vision-language integration
have been made by Jackendoff in his own computational model of
the mind [11]. Within this model, vision-language integration is de-
scribed as a set of principles of correspondence between theconcep-
tual structure levelof language and Marr’s3D model levelof vision.
His view of integration implies the use of a kind of integrated knowl-
edge base with both conceptual and visual information along with al-

4 Most research on cognitive architectures gives a very general picture on
how different faculties interact; in this section, we mention only some of
the most influencial models of the mind.
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gorithms for making inferences and extracting meaning. In suggest-
ing 3D models as the appropriate visual representations of objects
for forming associations with corresponding linguistic expressions,
Jackendoff points to an important issue in vision-language integra-
tion, i.e. the representation level at which vision-language associa-
tions are more efficiently made. It has been argued that the different
nature of the primitive units of the media involved creates acorre-
spondenceproblem between visual and linguistic representations that
hinders their integration [26]; if volumetric, object-centred and hier-
archical information (as the one provided by 3D models), which is
difficult to extract with state of the art image processing techniques,
is needed for integration, then one can justify why integration proto-
types rely on manually abstracted visual information. Both Minsky’s
and Jackendoff’s emerging theories of vision-language integration
point to important integration aspects towards which our own criti-
cisms of current AI vision-language integration prototypes have been
directed.

3 THE AI QUEST FOR VISION-LANGUAGE
INTEGRATION

Looking at vision-language integration in AI from both an imple-
mentation and a theoretical perspective has led to the identification
of three important characteristics shared by all state-of-the-art proto-
types and which indicate mistakes in current computational vision-
language integration practices:

• It is only simulated or manually abstracted visual input that is used
in integration prototypes

Whenever the input to the system is visual, it is either simulated (e.g.
synthesised graphics instead of video images) ora priori, manually
abstracted (e.g. geometric scene descriptions); if it is processed auto-
matically, in the best case, it is minimally analysed (e.g. extraction of
trajectories). It is no coincidence that most of the visual information
involved in the prototypes deals with events or single objects rather
than complex static scenes; the latter would require very accurate and
detailed visual analysis, while tracking changes in an already known
visual environment is less demanding. The case is not the same for
natural language input, which is usually analysed automatically to
different extents. It has been argued that visual modalities have in-
herent difficulties in providing indications of their focus and the de-
gree of abstraction of what they depict [5, 12], which hinders their
computational analysis. It seems, that by feeding the systems with
already abstracted information, a core integration challenge that is
related to the nature of the visual modalities is not being encountered
automatically, but is, instead, skipped.

A similar criticism was expressed more than a decade ago for AI
research in general. Brooks noted that system developers tend to do
the abstraction for their systems themselves leaving just some search
to the systems, thinking that at some point developments in other
AI sub-fields for automatic input acquisition and analysis will be in-
corporated to their own systems [6]. This leads to our second obser-
vation that has also been repeatedly mentioned as a critique for AI
research in general and which is related to the assumption, on the
part of AI system developers, that things will somehow, sometime
scale up [15, 1]:

• All vision-language integration prototypes are restricted to
blocksworlds or miniworlds

The applications of the prototypes reviewed involve either blobs in
various spatial configurations or extremely restricted real world ob-
jects/events such as car models, espresso machines, electric current

diagrams, collisions etc. When the application is a real one e.g. soc-
cer games, simplified simulations of the visual input or abstracted
data is used instead of the actual input. By simplifying the appli-
cation, ideal situations are assumed, many factors are ignored or
unrealistically simplified increasing the risks of making wrong or
unrealistic assumptions. Scaling has been considered important for
judging the significance of AI research implemented in a proto-
type [24]; however, hardly is it served when research is confined to
blocksworlds or miniworlds.

• It is only manually constructed vision-language integration re-
sources that are used

Apart from other knowledge resources, vision-language integration
prototypes usea priori known associations between conceptual and
visual entities. It has been argued that linguistic modalities have
no way to directly connect to physical entities, they can only indi-
rectly refer to them [10]; this missing link is conventional, language-
dependent and therefore learned. It is exactly this link that is provided
by developers to integration prototypes in the form of integrated re-
sources; once again, a limitation related to the nature of one of the
modalities,i.e. the linguistic modalities, which needs to be dealt by
an integration mechanism is tackled by the developers instead of the
system.

It seems, therefore, that AI integration prototypes do not address
integration problems related to the nature of the modalities inte-
grated at all; instead, they avoid these issues by relying exclusively
on human intervention in the form of pre-interpreted input and pre-
stored associations. Subsequently, core integration challenges are not
dealt with automatically to any extent; computational integration is
confined to cross-modal interpreters and co-ordination mechanisms.
Though developing such mechanisms is far from trivial, one cannot
talk about real integration prototypes, when major integration chal-
lenges are left completely up to the humans to deal with. The ques-
tion then becomes, whether it is currently possible at all to address
these challenges constraining human intervention to other integration
stages.

4 ENCOUNTERING INTEGRATION
CHALLENGES WITH VLEMA

The Vision-Language intEgration MechAnism (VLEMA) is a proto-
type that attempts to generate natural language descriptions of static
visual scenes depicting building interiors. The input to the system
is an automatically-generated visual reconstruction of a real static
scene encoded in the Virtual Reality Markup Language (VRML).
The system parses the file and creates an attribute-value matrix that
gathers visual information per object depicted, such as object parts,
position, shape and colour/texture. A rule-based ProLog interpreter
translates directly extracted visual information from this matrix into
natural language, so that all visual information is expressed linguis-
tically rather than numerically (in geometric parameters). On top of
that, the interpreter is also able to infer information from the matrix,
such as the relative size and spatial configuration of the objects de-
picted and express it in natural language. The linguistically expressed
visual information populates the slots of a natural language template
for describing rooms. At this point, the description is analytic,i.e. it
does notnamethe objects depicted, but it describes them in terms of
e.g. shape and colour, spatial or other relations to objects depicted
etc. Categorization (type indication) of the objects through linguistic
naming (e.g. “the chair” rather than “the brown object consisting of
two orthogonal flat surfaces supported by four legs”) is a task that we
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currently attempt to perform with the use of a domain-specific ontol-
ogy. The visual features and relations of each object depicted in the
scene and the known features and allowable relations for each con-
cept included in the ontology are compared; a probabilistic algorithm
is used for choosing the best-match for each object. The object name
selected substitutes the part of the template that refers to character-
istics of the object which are implied by its class,i.e. the category
membership determining features.

The motive underlying the —currently ongoing— development of
this prototype was to address the vision-language integration prob-
lems mentioned in section 3 in a way that would shift human inter-
vention from core integration stages and would actually minimise it.
In particular, VLEMA makes use of visual input that has not been
manually abstracted. It takes advantage ofvirtualised reality[13], a
recently emerged field that bridges the gap between computer vision
and computer graphics by using visual sensors to construct virtual
models of real visual scenes automatically, preserving the visual de-
tails of the latter. The files used as input to VLEMA are part of a
corpus of virtualised real building interiors, constructed and encoded
in texture-mapped VRML format automatically by a robot-surveyor.
Thus, the description of real, complex world scenes is also attempted,
rather than blocksworlds or miniworlds. Of course, the fact that the
VRML files have been created automatically makes the construction
of an interpreter much harder than when one deals with manually
built VRML source code; one of the difficulties lies on the way shape
primitives are encoded. In manually constructed virtual worlds the
source code includes, usually, linguistic references to the shape of an
object (e.g. “cube”); in the automatically created ones, the approxi-
mate shape can only be inferred from matrices of three-dimensional
coordinates of the points in space that form the contour of the object.

As far as the manually constructed integration resources prob-
lem is concerned, a vision-language association learning mechanism
would be important for avoiding any human intervention for object
naming. However, developing such a mechanism requires not only
large multimodal resources (training corpora), but also appropriately
annotated ones for effective and efficient development of learning
algorithms for real visual scenes [20]. VLEMA has opted for a semi-
automatic solution, which relies on a manually constructed, visual-
feature augmented ontology and on probabilistic matching. Relying
on feature-bundles for performing categorization has been criticised
extensively in computational and cognitive linguistics. In VLEMA’s
case though, the facts that categorization is constrained to physical
entities and that there is a vision-driven choice of features used to
represent categories in the ontology change things totally; admit-
tedly, the immenent evaluation of the prototype holds the answer to
how suitable an approach this is.

5 CONCLUSION

This “reality-check” of vision-language content integration in AI has
pointed to specific problems for computational integration and ten-
dencies in the field that work against the solution of these problems.
Addressing vision-language integration thoroughly and systemati-
cally has been the main objective of this paper, along with the hope to
provide concrete suggestions on the direction AI research could cur-
rently take to address some of the related computational problems.
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